在Phi-3大模型发布之际,我们基于Termux应用,在我的小米手机部署了Phi-3模型:文章地址
Termux应用是一个终端模拟器,它允许我们安装 Linux 操作系统,然后在 Linux 操作系统中安装 Ollama,最后基于 Ollama 下载和推理大模型,虽然方法可行,但是存在一些局限:
DeepSeek R1 很火爆,导致在使用 DeepSeek R1 时,老牛同学经常会遇到“服务器繁忙,请稍后重试。”的问题:
今天老牛同学推荐一款更加先进的应用:MNN Chat,它是由阿里巴巴开源的全功能多模态模型应用。
官网地址:https://www.mnn.zone
GitHub 源码地址:https://github.com/alibaba/MNN
接下来,我们在手机上部署试用一下,老牛同学的手机配置如下:
对于 Android 手机,我们可以直接下载和安装最新版本:下载地址
或者,我们也可以按照以下步骤,自己编译 Android 和 iOS 应用:
git clone https://github.com/alibaba/MNN.git
cd project/android
mkdir build_64
../build_64.sh "-DMNN_LOW_MEMORY=true -DMNN_CPU_WEIGHT_DEQUANT_GEMM=true -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_ARM82=true -DMNN_USE_LOGCAT=true -DMNN_OPENCL=true -DLLM_SUPPORT_VISION=true -DMNN_BUILD_OPENCV=true -DMNN_IMGCODECS=true -DLLM_SUPPORT_AUDIO=true -DMNN_BUILD_AUDIO=true -DMNN_BUILD_DIFFUSION=ON -DMNN_SEP_BUILD=ON"
mkdir -p ../../../apps/Android/MnnLlmChat/app/src/main/jniLibs/arm64-v8a
find . -name "*.so" -exec cp {} ../../../apps/Android/MnnLlmChat/app/src/main/jniLibs/arm64-v8a ;
cd ../../../apps/Android/MnnLlmChat
./gradlew installDebug
git clone https://github.com/alibaba/MNN.git
cd MNN/
sh package_scripts/ios/buildiOS.sh "-DMNN_ARM82=true -DMNN_LOW_MEMORY=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_BUILD_LLM=true -DMNN_CPU_WEIGHT_DEQUANT_GEMM=true
-DMNN_METAL=ON
-DMNN_BUILD_DIFFUSION=ON
-DMNN_BUILD_OPENCV=ON
-DMNN_IMGCODECS=ON
-DMNN_OPENCL=OFF
-DMNN_SEP_BUILD=OFF
-DMNN_SUPPORT_TRANSFORMER_FUSE=ON"
mv MNN-iOS-CPU-GPU/Static/MNN.framework /apps/iOS/MNNLLMChat/MNN.framework
确保 Link Binary With Libraried 中包含 MNN.framework,和其他三个 Framework:
如果没有包含,可以手动添加 MNN.framework:
cd /apps/iOS/MNNLLMChat
open MNNLLMiOS.xcodeproj
在 Xcode 项目属性中 Signing & Capabilities > Team 输入自己的账号和 Bundle Identifier:
等待 Swift Package 下载完成之后,进行编译使用。
手机上安装好MNN Chat应用之后,我们打开应用,就可以看到它所兼容的模型列表,包括文本、音频、图像等:
点击即可下载,老牛同学想体验一下文本和图片识别,下载了DeepSeek-R1-7B-Qwen-MNN和Qwen2-VL-2B-Instruct-MNN这 2 个大模型,等待下载完成。
先试用一下DeepSeek-R1-7B-Qwen-MNN文本模型,输入提示词:
同样是一年,为什么阳历固定12个月,而阴历却有闰月?
DeepSeek R1 开始思考,分析阳历和阴历的计算方法,最终得出结论:
从手机的推理速率来看,总体还算不错,比通过Termux应用的方式推理效率高多了。
接下来,看看Qwen2-VL-2B-Instruct-MNN图片多模态大模型,老牛同学让它进行车牌识别:
可以看到,识别的结果是很不错的!
还有其他的大模型,包括音频、图片生成(Stable Diffusion)等,大家可以体验一下。
Cocos 3D 小游戏:
01.技术选型 丨 02.研发流程 丨 03.小游戏框架丨 04.核心架构设计丨 05.分包构建发布
Transformers 框架序列:
02.AutoModel 初始化及 Qwen2.5 模型加载全流程
03.Qwen2.5 大模型的 AutoTokenizer 技术细节
04.Qwen2.5/GPT 分词流程与 BPE 分词算法技术细节详解
05.嵌入(Embedding)机制和 Word2Vec 实战
Pipeline NLP 任务序列:
零·概述 丨 01.文本转音频 丨 02.文本分类 丨 03.词元分类和命名实体识别 丨 04.问答 丨 05.表格问答 | 06.填充蒙版
往期推荐文章:
Cline 免费插件 + Qwen2.5 大模型,零经验也能开发“对联王”微信小程序
使用 Cursor + Qwen2.5 大模型 零经验研发微信小程序:自由构建个性化节拍器应用实战
Bolt.new 用一句话快速构建全栈应用:本地部署与应用实战(Ollama/Qwen2.5 等)
基于 Qwen2.5-Coder 模型和 CrewAI 多智能体框架,实现智能编程系统的实战教程
vLLM CPU 和 GPU 模式署和推理 Qwen2 等大语言模型详细教程
基于 Qwen2/Lllama3 等大模型,部署团队私有化 RAG 知识库系统的详细教程(Docker+AnythingLLM)
使用 Llama3/Qwen2 等开源大模型,部署团队私有化 Code Copilot 和使用教程
基于 Qwen2 大模型微调技术详细教程(LoRA 参数高效微调和 SwanLab 可视化监控)
ChatTTS 长音频合成和本地部署 2 种方式,让你的“儿童绘本”发声的实战教程
本文作者:奔跑的蜗牛,转载请注明原文链接:https://ntopic.cn
参与评论
手机查看
返回顶部